A Canonical Quadratic Form on the Determinant Line of a Flat Vector Bundle

نویسنده

  • MAXIM BRAVERMAN
چکیده

Abstract. We introduce and study a canonical quadratic form, called the torsion quadratic form, of the determinant line of a flat vector bundle over a closed oriented odd-dimensional manifold. This quadratic form caries less information than the refined analytic torsion, introduced in our previous work, but is easier to construct and closer related to the combinatorial Farber-Turaev torsion. In fact, the torsion quadratic form can be viewed as an analytic analogue of the Poincaré-Reidemeister scalar product, introduced by Farber and Turaev. Moreover, it is also closely related to the complex analytic torsion defined by Cappell and Miller and we establish the precise relationship between the two. In addition, we show that up to an explicit factor, which depends on the Euler structure, and a sign the BurgheleaHaller complex analytic torsion, whenever it is defined, is equal to our quadratic form. We conjecture a formula for the value of the torsion quadratic form at the Farber-Turaev torsion and prove some weak version of this conjecture. As an application we establish a relationship between the Cappell-Miller and the combinatorial torsions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refined Analytic Torsion as an Element of the Determinant Line

We construct a canonical element, called the refined analytic torsion, of the determinant line of the cohomology of a closed oriented odd-dimensional manifold M with coefficients in a flat complex vector bundle E. We compute the Ray-Singer norm of the refined analytic torsion. In particular, if there exists a flat Hermitian metric on E, we show that this norm is equal to 1. We prove a duality t...

متن کامل

The Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7

Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...

متن کامل

Combinatorial Invariants Computing the Ray-singer Analytic Torsion

Let K denote a closed odd-dimensional smooth manifold and let E be a flat vector bundle over K. In this situation the construction of Ray and Singer [RS] gives a metric on the determinant line of the cohomology detH(M ;E) which is a smooth invariant of the manifold M and the flat bundle E. (Note that if the dimension of K is even then the Ray-Singer metric depends on the choice of a Riemannian ...

متن کامل

Abelian Conformal Field theories and Determinant Bundles

The present paper is the first in a series of papers, in which we shall construct modular functors and Topological Quantum Field Theories from the conformal field theory developed in [TUY]. The basic idea is that the covariant constant sections of the sheaf of vacua associated to a simple Lie algebra over Teichmüller space of an oriented pointed surface gives the vector space the modular functo...

متن کامل

The Lie Algebra of Smooth Sections of a T-bundle

In this article, we generalize the concept of the Lie algebra of vector fields to the set of smooth sections of a T-bundle which is by definition a canonical generalization of the concept of a tangent bundle. We define a Lie bracket multiplication on this set so that it becomes a Lie algebra. In the particular case of tangent bundles this Lie algebra coincides with the Lie algebra of vector fie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007